Which Solar Costs Less?

A surprising comparison of utility-scale, community, and rooftop solar

Expert Edition

INSTITUTE F

Local Self-Reliance

John Farrell, Co-Director, September 14, 2023

Fact: Utilities Misrepresent the Cost of Solar to Serve Their Interests

Learn why they do, in their own words: https://twitter.com/johnffarrell/status/1702722441372434771

Fact: Solar Costs are Similar Whether it's on Rooftops, Community Arrays, or Utility-Scale

BENEFITS OF LOCAL SOLAR FOR THE CLEAN ENERGY TRANSITION

Opening the clean energy economy to all — ensuring the freedom to participate in generating clean power and saving money, with access for households living on low incomes.

Delivering better electricity reliability through dispersed generation, and with battery storage integration that can keep electricity on even if power lines go down.

Up to 30x more jobs than utility-scale solar, with jobs and the economic benefits more widely dispersed throughout the state.

The least-cost path to a carbon-free future,

with power prices

scale solar and

value.

comparable to utility-

providing better overall

Actual Solar Costs <u>& Benefits</u>

Cost of Solar by Type

Actual Solar Costs <u>& Benefits</u>

Power costs and

utility earnings

When we properly account for:

- Power production (including utility earnings)
- 2) Delivery, and
- 3) Grid savings

Grid savings

from local

solar

Delivery costs

The cost of electricity from solar projects of all sizes are very similar

Cost of Solar by Type

Local Self-Reliance

Minnesota's "value of

solar" recognizes that

local solar reduces

With one utility-scale solar project in Minnesota, costs (before tax credits) are basically the same as local solar

[,] Туре

Avoided transmission and distribution costs

With several utility-scale solar projects in Wisconsin, costs (before tax credits) are basically the same as local solar

Туре

BENEFITS OF LOCAL SOLAR FOR THE CLEAN ENERGY TRANSITION

Opening the clean energy economy to all — ensuring the freedom to participate in generating clean power and saving money, with access for households living on low incomes.

Delivering better electricity reliability through dispersed generation, and with battery storage integration that can keep electricity on even if power lines go down.

Up to 30x more jobs than utility-scale solar, with jobs and the economic benefits more widely dispersed throughout the state.

The least-cost path to a carbon-free future,

with power prices

scale solar and

value.

comparable to utility-

providing better overall

How Much Does Utility-Owned Solar Cost?

What Utilities Say

Costs to produce electricity

+

What Utilities Say

Utilities Don't Account for Delivery Costs

Federal Energy Regulatory Commission-regulated utility spending cents per kilowatt-hour (\$2016)

12

Source: Energy Information Administration, https://www.eia.gov/todayinenergy/detail.php?id=32812

Utilities Don't Account for Earnings

Actual Electricity Costs

Costs to produce <u>and</u> <u>deliver</u> electricity

- <u>Utility earnings</u>

Electric bills

Fact: Solar Costs are Similar Whether it's on Rooftops, Community Arrays, or Utility-Scale

Plus, local solar has a few more benefits!

BENEFITS OF LOCAL SOLAR FOR THE CLEAN ENERGY TRANSITION

Opening the clean energy economy to all — ensuring the freedom to participate in generating clean power and saving money, with access for households living on low incomes.

Delivering better electricity reliability through dispersed generation, and with battery storage integration that can keep electricity on even if power lines go down.

Up to 30x more jobs than utility-scale solar, with jobs and the economic benefits more widely dispersed throughout the state.

The least-cost path to a carbon-free future,

with power prices

scale solar and

value.

comparable to utility-

providing better overall

Expert Edition

Scroll on to see how shareholder earnings get added to utility bills, but are often left out of utility solar price quotes

Actual Electricity Costs

Costs to produce and deliver electricity

Utility earnings =

Rate base

x Rate of return

What is Rate base

Figure 9-3:

The Rate Base

Total Plant In Service At Original Cost

- Accumulated Provision for Depreciation
- = Net Plant in Service
- + Working Capital Allowances
- Accumulated Deferred Taxes
- +/-Other Adjustments Approved by the Commission
- = Rate Base

What is Rate base

Figure 9-3:

. . .

. .

The Rate Base

Total Plant In Service At Original Cost

- Accumulated Provision for Depreciation
- = Net Plant in Service
- Working Capital Allowances
 We'll ignore these for now,
 Accumulated is simplified for understanding
 +/-Other Adjustments Approved by the Commission
- = Rate Base

Utilities Earnings From the Ratebase

Original cost (\$ millions)	Value today of utility's equity investment (depreciated value)		Utility's rate of return*	<u>This year's</u> earnings	
\$1200	\$500	×	9%	= \$45	
\$3500	\$2200	×	9%	= \$198	
\$1600	\$1300	×	9%	= \$117	
	Ratebase	*	Rate of return	\$360 Million	

*The rate of return, approved by the Public Utilities Commission, is a mixed of the cost of utility capital and debt (including the cost of taxes on equity and the tax benefits of debt). 9% is the low end of the average nationally, with rates of return ranging from 9 to 11%

Actual Electricity Costs

\$5 billion

Costs to produce and deliver electricity

Utility earnings \$360 million

Electric bills

\$5.36 billion

Utility Scale Solar Costs

Low Cost Total: \$1.2 billion

Cost of energy to customers: 6.5 cents per kilowatt-hour

With delivery costs included

High Cost Total: \$2.4 billion

Cost of energy to customers: 8.7 cents per kilowatt-hour

With delivery costs included

850 MW of solar produces ~1.34 billion kilowatt-hours per year

= 36.6 billion kilowatthours over 30 years*

With costs weighted based on the year of production

Modeling Utility Scale Solar Costs

- 850 MW of solar
- 30 year useful life (for depreciation)
- With tax equity return: 6.67%
- With tax debt return: 1.88%
- Debt/equity ratio: 50%
- Project capital cost
 - Low-cost model: \$595 million*
 - High-cost model: \$1,190 million*

Low-cost model

High-cost model

The utility earns money EVERY YEAR on the remaining value of the solar power plant

Utility Earnings from a Utility Scale Solar Project (30-year project life)

Year	0	1	2	3	4	5
With tax equity return	\$19.8	\$19.2	\$18.5	\$17.9	\$17.2	\$16.5
With tax debt return	\$5.6	\$5.4	\$5.2	\$5.0	\$4.8	\$4.7
Depreciation	\$19. 	\$19.8	\$19.8	\$19.8	\$19.8	\$19.8
	St	IOTA	I:) I	. Z DI	IIION	
Operations and						
maintenance (\$millions)	\$6.0	\$6.0	\$6.0	\$6.0	\$6.0	\$6.0
Total cost (\$millions)	\$51.2	\$50.4	\$49.5	\$48.7	\$47.8	\$47.0
Year	0	1	2	3	4	5
With tax equity return	\$39.7	\$38.4	\$37.0	\$35.7	\$34.4	\$33.1
With tax debt return	\$11.2	\$10.8	\$10.4	\$10.1	\$9.7	\$9.3
Depretation C	C^{\$9.7}	Tota	- Q		\$ 897	\$39.7
			ΨL			_
Operations and						
maintenance (\$millions)	\$11.9	\$11.9	\$11.9	\$11.9	\$11.9	\$11.9
Total cost (\$millions)	\$102.4	\$100.7	\$99.0	\$97.4	\$95.7	\$94.0

*Installed cost per Watt range from Lazard v16: <u>https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf</u>. Range includes the \$1.00/Watt price from Berkeley Lab's "Utility-Scale Solar, 2022 Edition" https://emp.lbl.gov/utility-scale-solar. This does not include land leases, insurance, transmission or substation upgrades or anything else required to deliver electricity to customers.

Modeling Utility Scale Solar Costs

- 850 MW of solar
- 30 year useful life (for depreciation)
- With tax equity return: 6.67%
- With tax debt return: 1.88%
- Debt/equity ratio: 50%
- Project capital cost
 - Low-cost model: \$595*

With tax equity return \$19.8 \$19.2 \$18.5 \$17.9 \$17.2 \$16.5 With tax debt return \$5.6 \$5.2 \$5.0 \$4.8 \$4.7 · High-cost model: \$1,190 million* Low Cost Total: \$1.2 billion \$5.4 \$19.8 \$19.8 \$19.8 \$19.8 \$19.8 \$19.8 → \$307 million is return to shareholders maintenance (\$millions) \$6.0 \$6.0 \$6.0 \$6.0 \$6.0 \$6.0 Total cost (\$millions) \$51.2 \$50.4 \$49.5 \$48.7 \$47.8 \$47.0 Year 0 1 2 3 4 With tax equity return \$39.7 \$38.4 \$37.0 \$35.7 \$34.4 \$33.1 With tax debt return \$11.2 \$10.8 \$10.4 \$10.1 \$9.7 \$9.3 High Cost Total: \$2.4 billion \$39.7 \$39.7 \$39.7 \$39.7 \$39.7 \$39.7

Year

→ \$615 million is return to shareholders

maintenance (\$millions)	\$11.9	\$11.9	\$11.9	\$11.9	\$11.9	\$11.9
Total cost (\$millions)	\$102.4	\$100.7	\$99.0	\$97.4	\$95.7	\$94.0

0

1

2

3

4

5

5

Utility Scale Solar Earnings + Delivery Costs

Low Cost Total: \$1.2 billion

Cost of energy to customers: 6.5 cents per kilowatt-hour

With delivery costs included

High Cost Total: \$2.4 billion

Cost of energy to customers: 8.7 cents per kilowatt-hour

With delivery costs included

850 MW of solar produces ~1.34 billion kilowatt-hours per year

= 36.6 billion kilowatthours over 30 years*

With costs weighted based on the year of production

Actual Solar Costs <u>& Benefits</u>

Thus, when accounting for all relevant costs, solar of all sizes has a comparable cost

